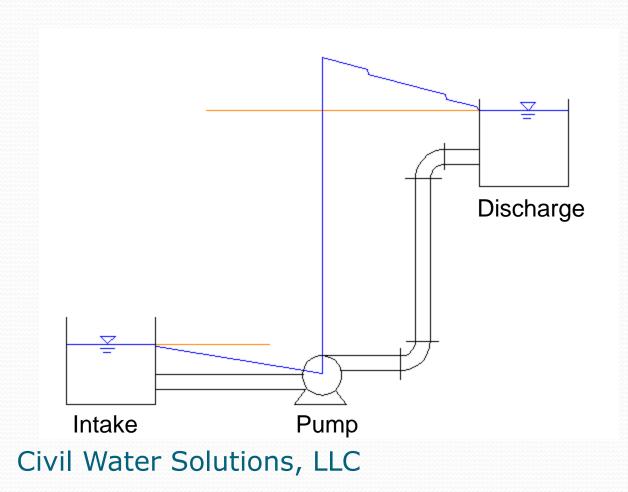
### **Wastewater Treatment Plant Pumping**

4<sup>th</sup> Annual Wastewater Conference Grand Junction, Colorado March 25, 2009

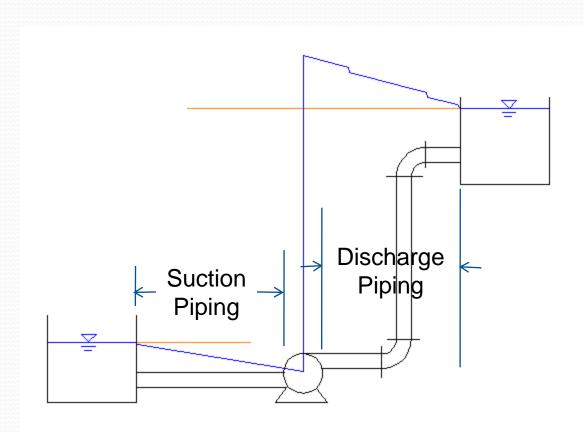
Raymond D. Hamilton, PE, BCEE Principal Engineer, Civil Water Solutions, LLC



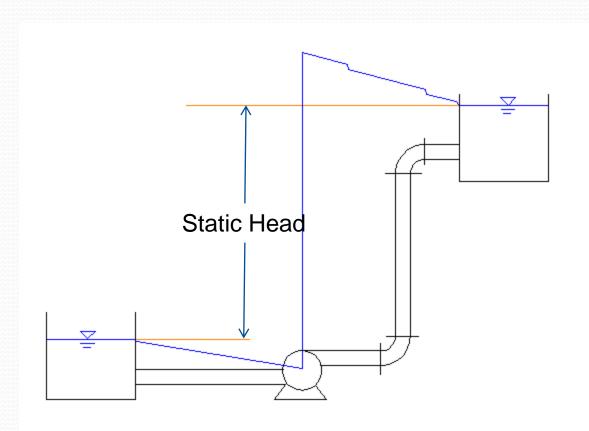
## Curriculum


- Session 1 Overview of Wastewater Pumping
- Session 2 Liquid Stream Process Pumps
- Session 3 Solids Stream Process Pumps
- Session 4 Service Pumps and Conclusion

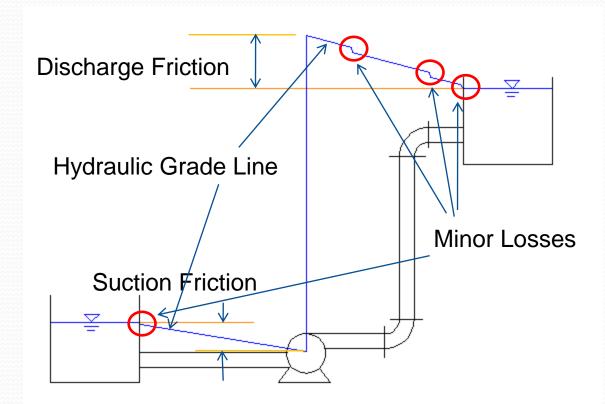



### Session 1 – Overview of Wastewater Pumping

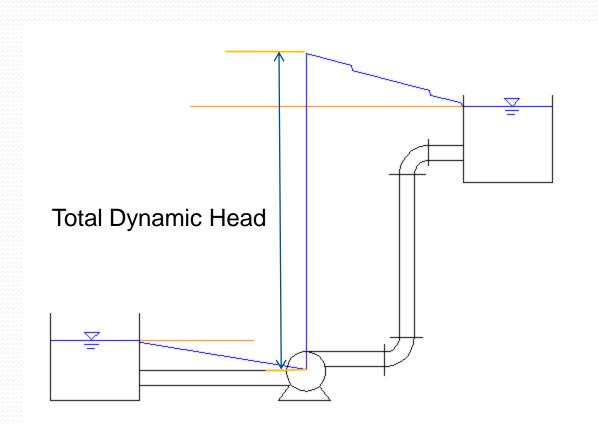
- Introduction to Pump Theory Basics
- Common Hydraulic Problems with Pump Systems





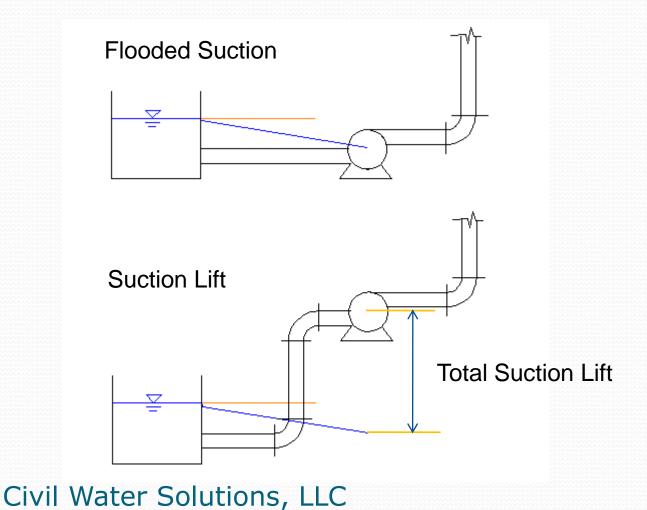





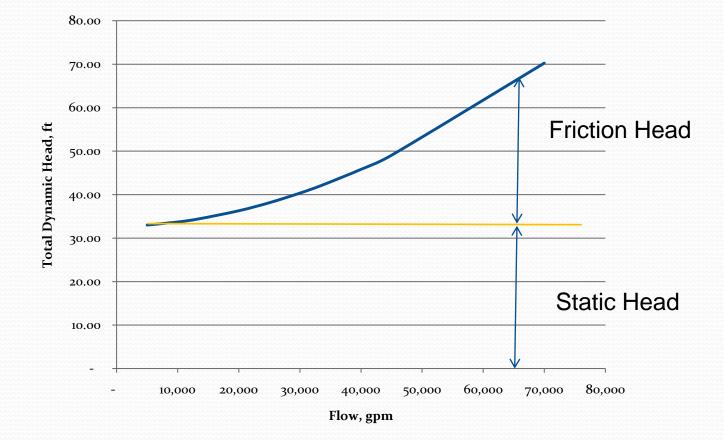








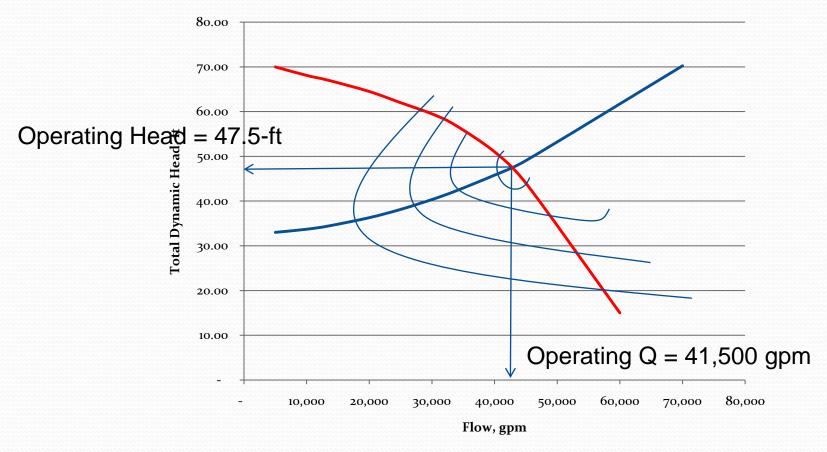

## **Two Types of Suction Conditions**





## System Head Curve






## **Pump Curve**





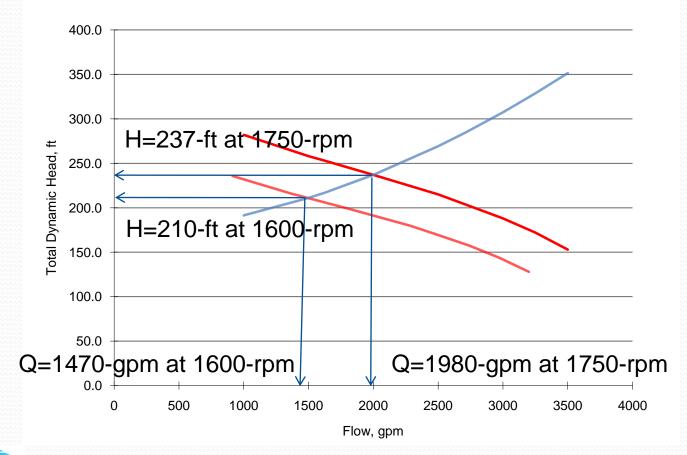
# Combined System Head/Pump Curve





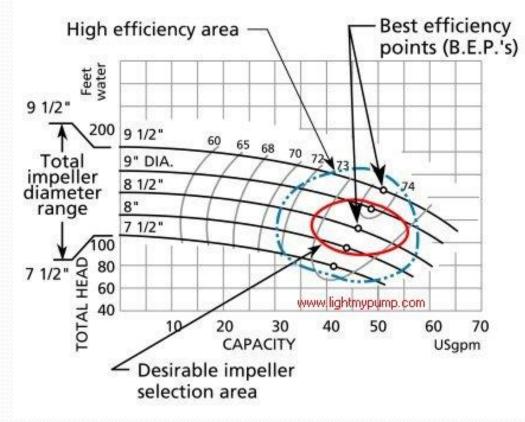
## **Calculating Pump Horsepower**

$$HP = \frac{QH}{3960e}$$


Where:

HP = Horsepower
Q = Flow in gallons per minute
H = Total Dynamic Head in feet
e = Pump Efficiency as decimal fraction

$$HP = \frac{41,500 * 47.5}{3,960 * 0.7} = 711$$




## Variable Speed





## **Change to Impeller Diameter**



Source: http://www.lightmypump.com/centrifugal-pump-tips.htm Civil Water Solutions, LLC

# **Pump Classifications**

Based on Pump Specific Speed

$$n_s = \frac{n\sqrt{Q}}{H^{\frac{3}{4}}}$$

Where:

 $n_s$  = Specific Speed n = pump speed, rpm Q = flow, gpm H = Total Dynamic Head per Stage, ft



# **Pump Classifications**

- Radial Vane
  - Higher Head
  - Lower Flow
  - Lower Specific Speed
- Axial Flow (Propeller Pumps)
  - Low Head
  - High Flows
  - High Specific Speeds
- Mixed Flow
  - Moderate Head
  - Moderate Flows
  - Intermediate Specific Speeds



## Pump Efficiency by Classification

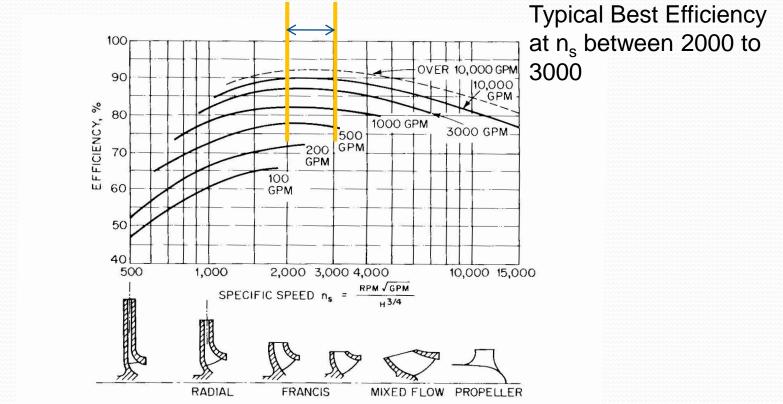



Fig. 7 Pump efficiency versus specific speed and size. (Worthington Pump International, Inc.)

Source: Pump Handbook. Karassik, et.al., McGraw-Hill, NY, NY, 1976



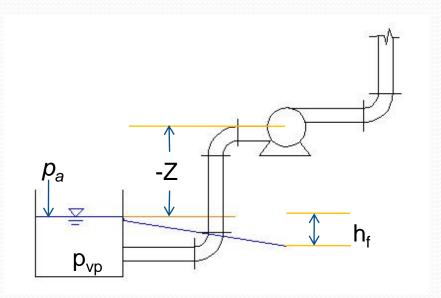
# **Typical Pump Problems**

- Cavitation
- Pump Run-Out
- Worn Impellers
- Pre-Mature Bearing Failure Due to Dynamic Loads
- Improper Piping or Alignment



# Cavitation




#### Source:

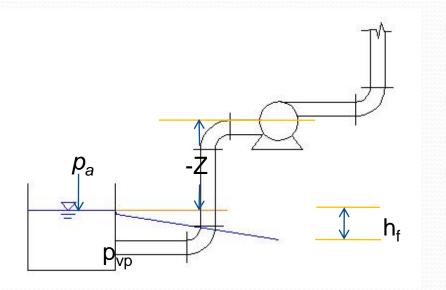
http://www.irrigationcraft.com/diagnosing\_c avitation.htm

- Leading cause of impeller wear
- Identified by crackling, sizzling, popping sound
- Caused by repeated formation and collapse of bubbles at low vapor pressure
- Result of insufficient net positive suction head (NPSH)



### **Net Positive Suction Head Available**




$$h_{sv} = \frac{p_a - p_{vp}}{v} + Z - h_f$$

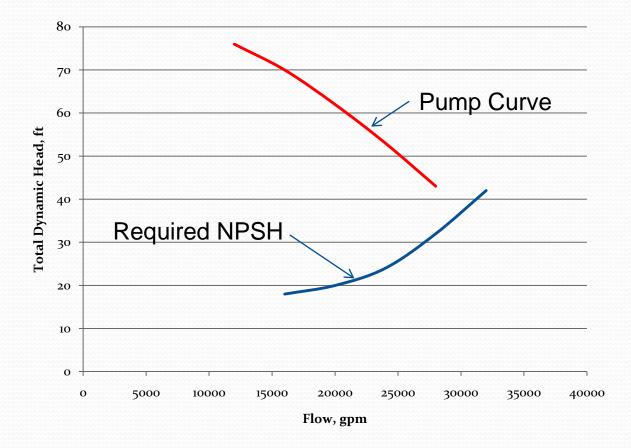
Where:

 $h_{sv}$  = Net Positive Suction Head, ft  $p_a$  = Absolute Pressure, ft  $p_{sv}$  = Vapor Pressure of Fluid, ft  $\gamma$  = Specific Gravity of Fluid Z = Elevation Difference, ft  $h_{sv}$  = Suction Eriction Loss ft



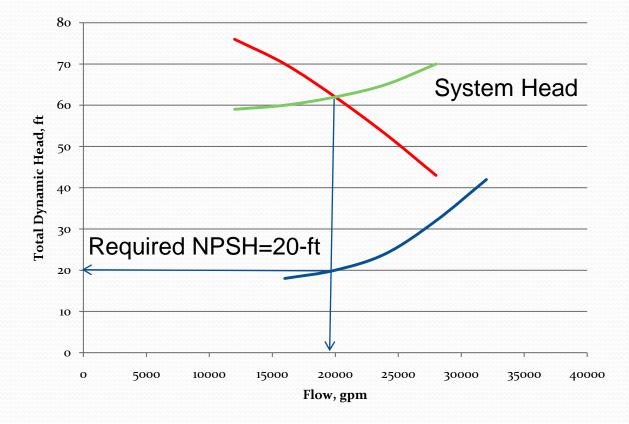
### **Net Positive Suction Head Available**




$$h_{sv} = \frac{p_a - p_{vp}}{v} + Z - h_f$$

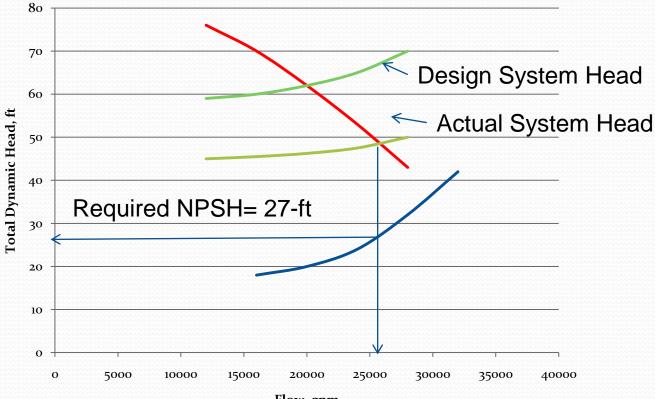
Where:

$$p_a = 28.2 \text{-ft} \text{ at } 5000 \text{-ft} \text{ MSL}$$
  
 $p_{sv} = 0.59 \text{-ft} \text{ at } 60 \text{ }^\circ\text{F}$   
 $\gamma = 0.999 \text{ at } 60 \text{ }^\circ\text{F}$   
 $Z = -5 \text{-ft}$   
 $h_f = 1.5 \text{-ft}$   
 $h_{sv} = 21.14 \text{-ft}$ 




### Net Positive Suction Head Required






### Net Positive Suction Head Required



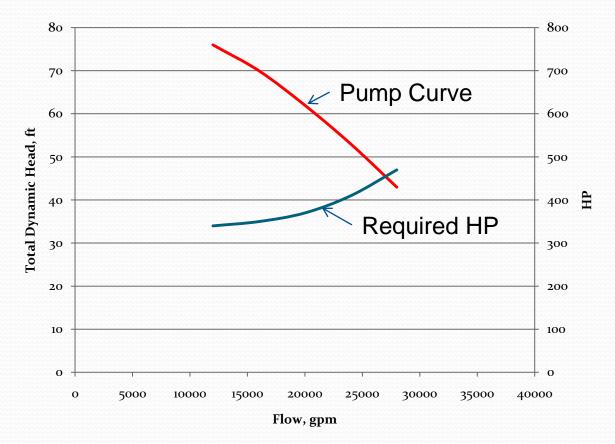


## **Cavitation Example**



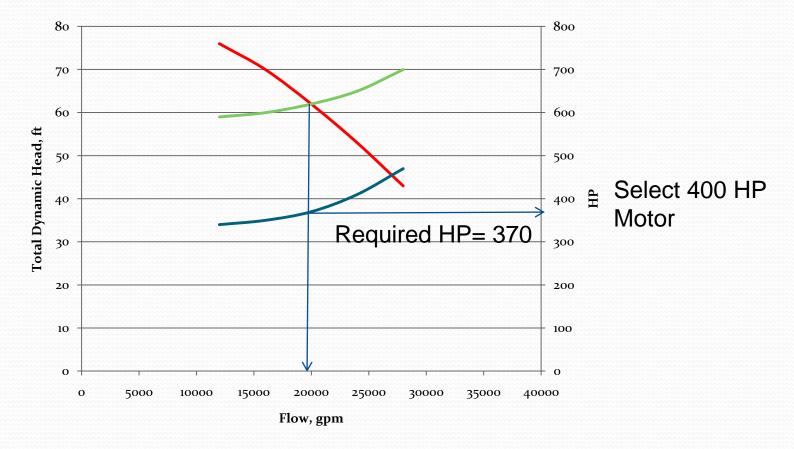
Flow, gpm

### **Pump Will Cavitate!**



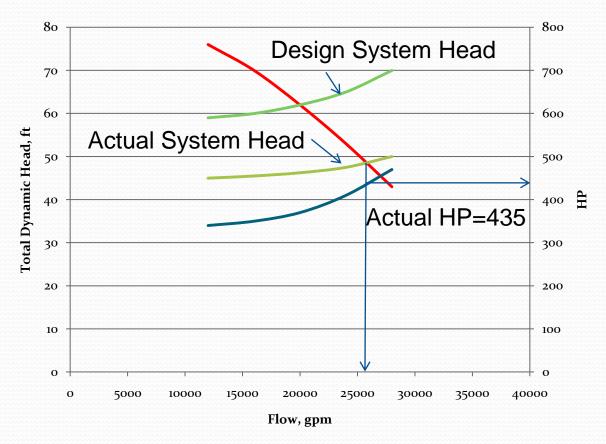

## **Correcting Cavitation Problems**

- Provide More Suction Head
  - Raise Suction Water Level
  - Lower Pump
  - Provide Smooth Suction Entrance
  - Increase Suction Piping Diameter to Reduce Friction Loss
  - Straighten Suction Piping to Reduce Minor Loss
- Replace Impeller with "Tougher" Material
  - Nickel-Aluminum-Bronze>300 Stainless Steel>400 Stainless Steel>Monel>Manganese-Bronze>Cast Steel>Aluminum >Bronze>Cast Iron
- Provide Protecting Coating on Impeller
  - Neoprene > Polyurethane




## **Pump Run-Out Conditions**






## **Pump Run-Out Conditions**



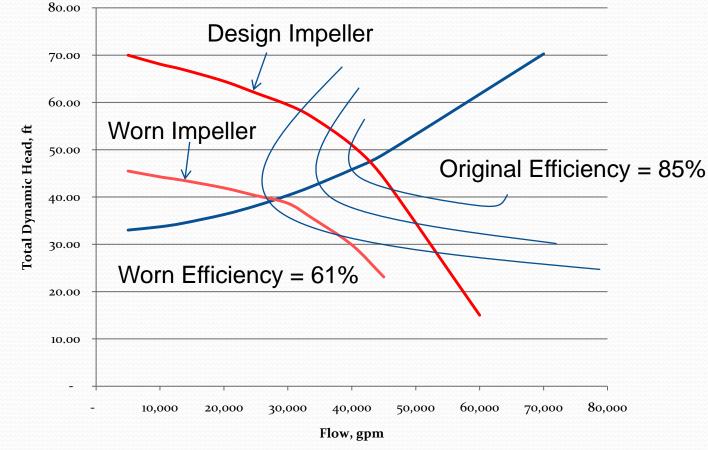


## **Pump Run-Out Conditions**



400-HP Motor Will Overheat and Eventually Burn-Up




## **Correcting Pump Run-Out**

- Increase Total Dynamic Head Adds to Operating Costs
  - Lower Suction Water Surface
  - Induce Increased Discharge Head with Control Valve
- Trim Impeller May Change Efficiency
- Add VFD Drive to Reduce Operating Speed Added Capital Cost and VFD Energy Loss

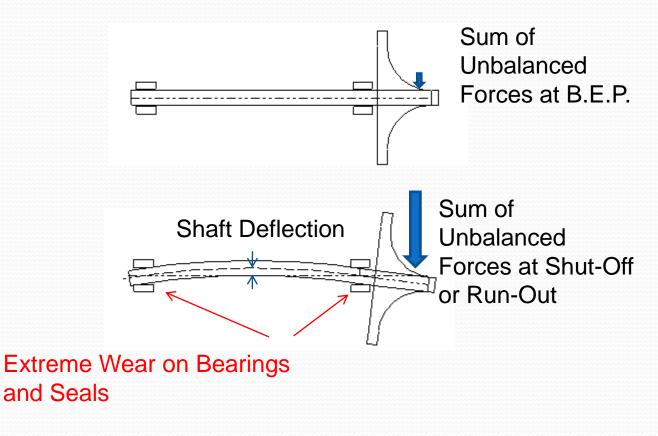
All Else Being Equal – Adding VFDs is Usually the Better Option



## Impact of Worn Impeller

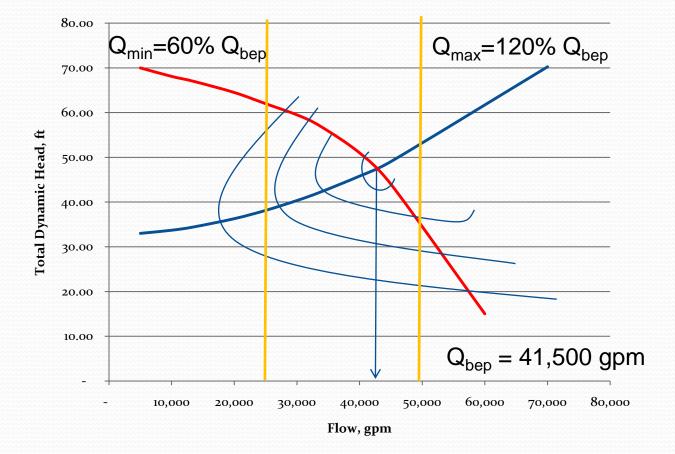





# Impact of Worn Impeller

- Flow Rate Reduced from 41,500-gpm to 29,000-gpm
- Efficiency Reduced from 85% to 61%
- Run Time to Pump the Same Volume Increased by 43%
  - Assuming 12-hrs per day design run time
  - Revised run time is 17.2-hrs
  - At \$0.08/KWH
  - Design annual power cost = \$153,000
  - Worn impeller annual power cost = \$179,800

Annual Power Wasted = \$26,800 Due to Worn Impeller




## **Unbalanced Force on Impeller**





## Operating Range to Avoid Excessive Unbalanced Forces on Impeller





# **Correction of Unbalanced Force**

# Problems

- For Operation to the Left of BEP
  - Select Different Pump (One with Lower Specific Speed)
  - Lower Total Dynamic Head
    - Increase Discharge Pipe Diameter to Reduce Friction Loss
    - Straighten Piping to Reduce Minor Losses
    - Reduce Static Head by Increasing Suction or Reducing Discharge Water Surface Elevations
  - Increase Shaft Diameter and Specify "Tougher " Bearings and Seals
- For Operation to the Right of BEP
  - Treat the Same as for Pump Run-Out Correction



# Problems With Improper Piping and/or Alignment

- Strain on Pump Flange Face Twists Volute Casing
  - Reduces Clearance Around Wear Ring
  - Twists Impeller Shaft (Same Problem then As for Pump Run-Out)
- Improper Alignment of Motor and Pump Shaft
  - Twists Impeller Shaft (Same Problem then As for Pump Run-Out)
  - Results in Vibration
  - Wastes Energy



# Correction of Improper Piping and/or Alignment

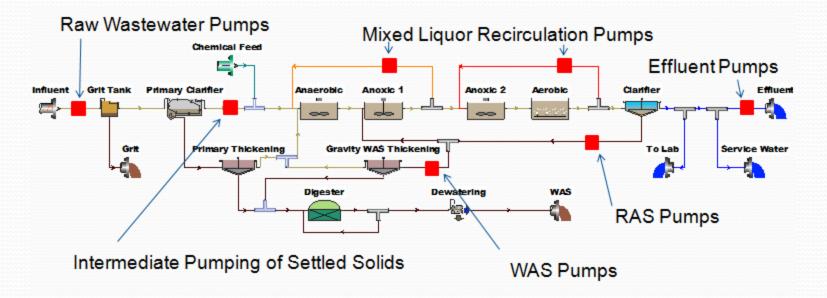
- Loosen Bolts on Suction and Discharge Flanges
  - Piping Should NOT Move
  - If Piping Moves
    - Adjust Piping , or
    - Re-Set Pump, or
    - Provide Flexible Coupling Between Pump and Piping
- Improper Alignment of Motor and Pump Shaft
  - Re-Set Pump or Motor



### Introduction of Various Pump

### Types

- For the Balance of the Sessions New Pump Types Will be Introduced as They are Commonly Used for a Particular Application
- When a Pump Type is First Introduced it Will be Highlighted in GREEN
- For Subsequent Application of That Pump Type for a Different Application it Will be Shown in BLACK and the Information Will Not be Repeated




### Session 2 – Liquid Stream Process Pumps

- Raw Wastewater Pumps
- Intermediate Pumping of Settled Sewage
- Biosolids Recirculation Pumps
- Return and Waste Biosolids Pumps
- Clarified Effluent Pumps



### Liquid Stream Process Pumps

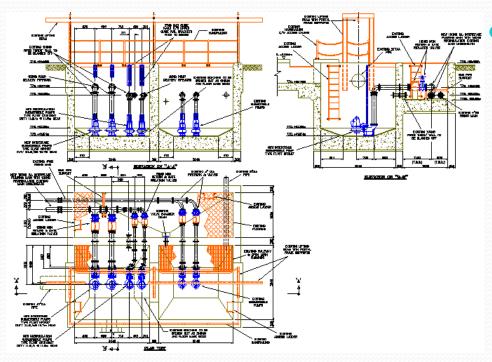




### Raw Wastewater

- Can be Screened or Unscreened
  - Typically Screened Before Pumping if Influent Sewer is "Relatively" Shallow
  - Typically Unscreened if Influent Sewer is Deep
- Wide Range of Flow Rates if Unequalized
  - Typically Sized for at Least 2.5 Times Design Capacity
  - May be Sized with Much Higher Ratios in Small Systems
- Characteristics
  - Temperature: 34-°F to 60-°F
  - Solids: Content Less than 500-mg/l (0.05%)
  - pH: 6 to 9 (not unusually acidic or basic)
  - Grit: 2 to10 cubic feet per million gallons
  - Screenings: 0.2 to 5 cubic feet per million gallons
- Behaves and Pumps Like "Water"




### **Common Raw Wastewater**

### **Pump Types**

- Non-Clog = Ability to Handle >4-in Spheres and Stringy Trash
- Submersible Non-Clog Centrifugal Pumps
  - Wet-Pit
  - Dry-Pit
- Dry-Pit End Suction Non-Clog Centrifugal
  - Close-Coupled
  - Line-Shaft
  - Self-Priming Belt Driven
- Screw Pumps
- Screw Centrifugal Pumps



### **Non-Clog Submersible Pumps**



#### Source:

http://www.directdesigns.org.uk/images/Direct%20De signs/Sewage%20Treatment%20Works/interstage%2 0pump%20station.gif

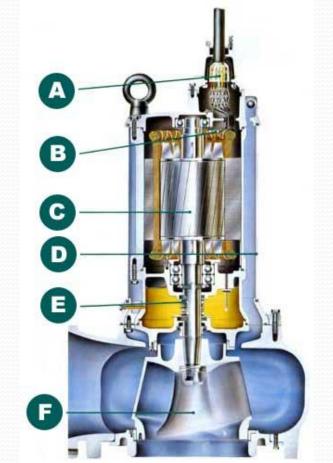
### Wet-Pit Application

- Advantages
  - Lowest Cost for Raw Wastewater Pumping
  - Compact Layout
- Disadvantages
  - Pumps Must be Pulled and Cleaned for Maintenance
  - Requires Separate Valve Vault



# **Non-Clog Submersible Pumps**

### Dry-Pit Installation


- Advantages
  - Easy Pump Access
  - Valves, etc. in Dry-Pit
  - Allows Emergency Wastewater Storage in the "dry-well"
- Disadvantages
  - More Costly than Other Dry-Pit Pump Options
  - More Difficult to Work on Pump In-Place
  - Requires Air or Oil Cooling



Source: www.frankenmuthcity.com/<wbr>wastewater/raw1 .jpg



### **Typical Submersible Pump**



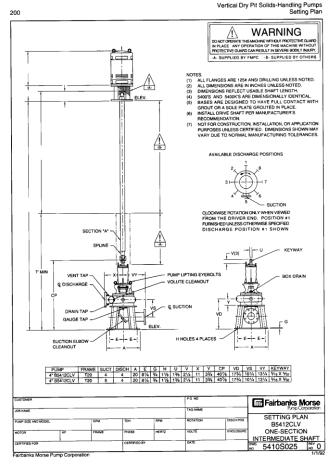
- A Cable Seal
- B Motor Protection Sensors
- C Motor with Dry-Type E, B or F Insulation
- D Water Cooled Jacket
- E Mechanical Seal
- F Non-Clog Impeller

Source:

http://www.pumppower.com/TsurumiSubmersibles.htm

# Dry-Pit End Suction Non-Clog Centrifugal




http://www.cranepumps.com/products/typeNonClog



- Close-Coupled Installation
  - Advantages
    - Lower Cost
    - Relatively Easy Alignment
    - Tried and True Design
    - Vertical (show) or Horizontal Positioning
  - Disadvantages
    - Motor Failure if Dry-Pit Floods
    - Requires Well Ventilated
       Dry-Pit to Avoid Class I, Div
       2 NFPA 820 Designation

# **Dry-Pit End Suction Non-Clog**

# Centrifugal



### Line-Shaft Installation

- Advantages
  - Pump Located in "Controlled" Environment
  - Dry-Pit Can Flood in Emergency Without Damage to Motors
- Disadvantages
  - Alignment Difficulties
  - Some HP Lost in Shaft Drive
  - More Costly



# Dry-Pit End Suction Non-Clog Centrifugal



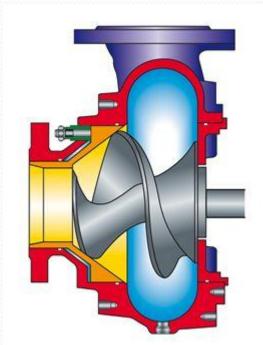
- Belt-Driven Installation
  - Advantages
    - Easy to Change Pump Speeds by Adjusting Pulley Diameters
    - Commonly Used with Self-Priming Centrifugal Pumps
  - Disadvantages
    - Less Efficient Due to Energy Loss of Belt Drive

Source http://www.grpumps.com/upload/P\_BMPS.jpg



### **Screw Pumps**




Source: http://www.lakesideequipment.com/products/Screw\_Pumps/sp4.jpg

### Open (shown) or Enclosed Installations

- Advantages
  - Inherently Variable Flow
  - Difficult to Clog
  - No Wet-Well Needed
- Disadvantages
  - Limited to Moderate Lifts
  - Cost
  - Submerged End Bearing



### **Screw Centrifugal Pumps**



Source:

http://www.hidrostal.co.uk/docs/screw\_centrifu gal\_impeller/pump\_xsection\_new.jpg



- End Suction, Dry-Pit Installation
  - Advantages
    - Handles large solids and Stringy Solids Exceptionally Well
    - High Efficiency for a Typical Solids Handling Pump
  - Disadvantages
    - More Costly
    - Limited Number of Manufacturers

### Intermediate Pumping of Settled

### Sewage

- By Definition Follows Primary Clarification
- Required Where the Hydraulic Grade Line Following the Primary Clarifiers is Insufficient to Flow By Gravity to Downstream Processes
- More Common in WWTPs that Have been Upgraded/Modified – Less Common in New WWTPs
- Typically Low-Head Applications
- Same Flow Range as for Raw Wastewater Pumping

### Intermediate Pumping of Settled

### Sewage

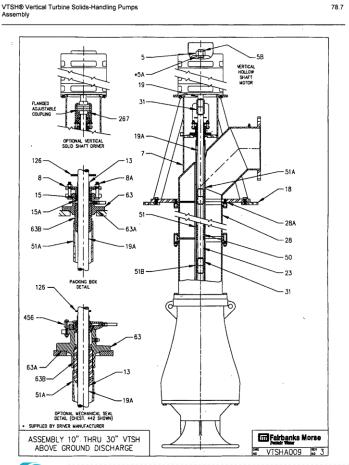
Characteristics of Settled Sewage

- Temperature: 34-°F to 60-°F
- Solids: Content Less than 100-mg/l (0.01%)
- pH: 6 to 9 (not unusually acidic or basic)
- Little to No Grit
- May Contain Wind-Blown Debris or Rags (if poorly screened)
- Behaves and Pumps Like "Water"
- Typical Suitable Pumps
  - Centrifugal Non-Clog End Suction (Both Submersible and Dry-Pit, Close-Couples, Line-Shaft, or Belt-Driven
  - Screw Pumps
  - Vertical Mixed Flow Pumps
  - Vertical Turbine Solids Handling Type Pumps



### **Vertical Pumps**

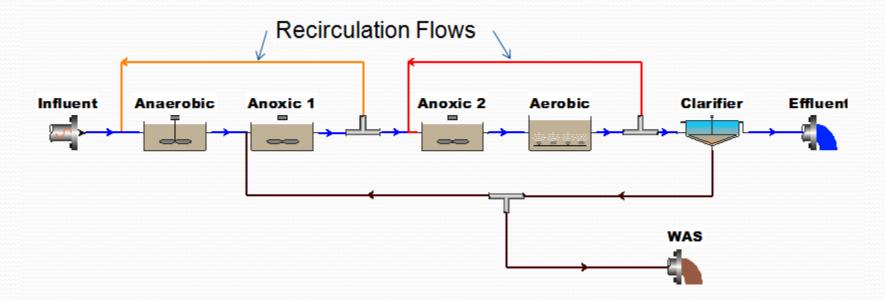



- Mixed Flow Installations
  - Advantages
    - Compact Design
    - Low Speeds
    - Modest Cost
  - Disadvantages
    - May Have Harmonic Problems When Operated with VFDs
    - Limited Moderate Lifts

#### Source:

http://www.sulzerpumps.com/Portald ata/9/Resources/brochures/power/ve rtical/JM\_VerticalMixedFlowPumps\_ E00634.pdf




### **Vertical Pumps**

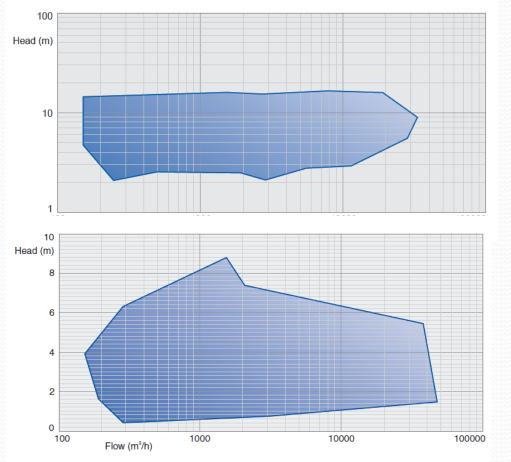


- Vertical Turbine Solids Handling
  - Advantages
    - Extremely Rugged
    - Pass Large Solids
    - Slow Speeds
  - Disadvantages
    - Very Costly
    - Enclosed Line Shaft Which Requires Water Flush
    - Requires Moderate TDH



### **Biosolids Recirculation Pumps**




- Required For Certain Types of Biological Nutrient Removal Processes (Modified UCT Process Shown)
- Also Includes Trickling Filter Recirculation Flows

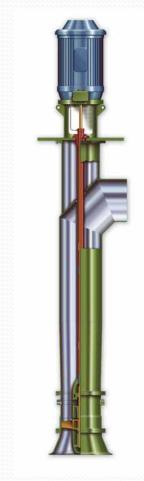
# **Biosolids Recirculation Pumps**

- Characteristics of Recirculated Biosolids Pumping
  - Very Low Heads
  - Temperature: 34-°F to 60-°F
  - Solids: Content May be up to10,000-mg/l (1.0%)
  - pH: 6 to 9 (not unusually acidic or basic)
  - Little to No Grit
  - May Contain Wind-Blown Debris or Rags (if poorly screened)
- Behaves and Pumps Like "Water"
- Typical Suitable Pumps
  - Centrifugal Non-Clog End Suction (Both Submersible and Dry-Pit, Close-Coupled, Line-Shaft, or Belt-Driven
  - Screw Pumps
  - Vertical Propeller Pumps
  - Air Lift Pumps
  - Horizontal Propeller Pumps



### **Mixed Flow Versus Propeller**

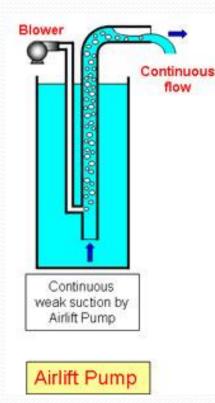



Source:

http://www.sulzerpumps.com /Portaldata/9/Resources/bro chures/power/vertical/JP\_Ve rtical\_E00635.pdf



Civil Water Solutions, LLC


### **Vertical Pumps**



- Vertical Propeller Pumps
  - Advantages
    - Low Cost
    - Pass Large Solids
    - Slow Speeds
  - Disadvantages
    - Only Suitable for Very Low TDH
    - Requires Higher NPSH



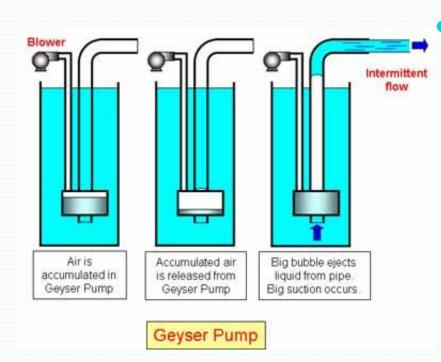
### Air Lift Pumps



Source:

http://www.airliftpump.com/airlift\_pump

\_skematic.jpg




#### Civil Water Solutions, LLC

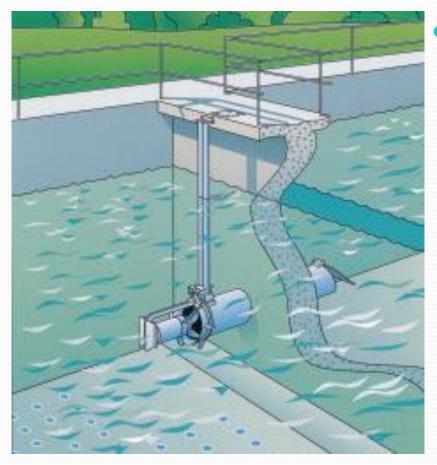
### Air-Lift Pump Installation

- Advantages
  - Simple Concept
  - Very Low Cost
  - No Significant Piping
- Disadvantages
  - Weak suction
  - Unstable flow rate
  - Frequent clogging
  - Difficult flow control
  - Low lift (Usually Less than 1-ft)
  - Not Suitable for Anoxic/Anaerobic Recirculation Because of Aeration
  - Very Low Efficiency (<30%)

# Air Lift Pumps



Source:


http://www.airliftpump.com/bk\_1\_sche matic.jpg

### Geyser Pump Installation

- Advantages
  - Simple Concept
  - Very Low Cost
  - Less Prone to Clogging
  - No Significant Piping
- Disadvantages
  - Difficult flow control
  - Low lift (Usually Less than 1-ft)
  - Not Suitable for Anoxic/Anaerobic Recirculation Because of Aeration
  - Very Low Efficiency (<30%)

### JI

### **Horizontal Propeller Pumps**



#### Horizontal Propeller Pump Installation

- Advantages
  - Low Cost
  - No Piping
- Disadvantages
  - Requires Contiguous Walls
  - Submerged Access
  - Limited to Low Heads (<6-ft)
  - Limited Range of Capacity/Size (16-in, 24-in, 30-in)
  - No Direct Flow Control/Measurement



### **Return and Waste Activated**

# **Sludge Pumps**

- Characteristics of Return and Waste Activated Sludge Pumping
  - Moderate to Low Heads
  - Temperature: 34-°F to 60-°F
  - Solids: Content May be up to10,000-mg/l (1.0%)
  - pH: 6 to 9 (not unusually acidic or basic)
  - Little to No Grit
  - May Contain Wind-Blown Debris or Rags (if poorly screened)
- Behaves and Pumps Like "Water"
- Typical Suitable Pumps
  - Centrifugal Non-Clog End Suction Dry-Pit (Typically Close-Coupled)
  - Screw Pumps
  - Screw Centrifugal Pumps
  - Air Lift Pumps



# **RAS/WAS** Pumping

- Unique Configurations
  - Non-Clog Centrifugals Can be Directly Piped to the Secondary Clarifier Suction Scrapper
    - Often Results in "Convoluted" Suction Piping Important to Check NPSH Considerations
    - Maximum Flexibility in Suction and Discharge Configurations to Allow Duty and Standby Pumps to Serve Multiple Purposes
  - Screw Pumps and Air Lift Pumps Generally Require Suction Header or Hopper to Be Piped to a Sludge Wet-Well

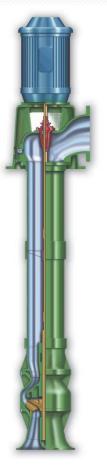


# **Clarified Effluent Pumps**

#### Characteristics of Clarified Effluents

- Moderate to High Heads
- Temperature: 34-°F to 60-°F
- Solids: Less than 30-mg/l (0.03%)
- pH: 6 to 9 (not unusually acidic or basic)
- Behaves and Pumps Like "Water"
- Low /Moderate Head Applications
  - Discharge (e.g. During River Flood Stage)
  - Tertiary Filter Feed
- High Head Applications
  - Irrigation
  - Transmission (e.g. Remote Discharge Location or Reuse)




# **Clarified Effluent Pumps**

- Low/Moderate Head Applications
  - Centrifugal Non-Clog
    - Submersible
    - Dry-Pit
  - Vertical Pumps
    - Mixed Flow
    - Propeller
  - Screw Pumps
  - Air-Lift Pumps

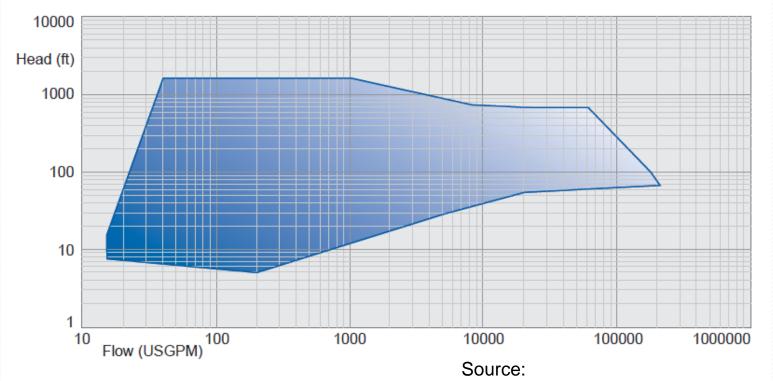


- High Head Applications
  - Centrifugal Non-Clog
    - Submersible
    - Dry-Pit
  - Vertical Turbine

### **Vertical Pumps**



Source:


http://www.sulzerpumps.com/P ortaldata/9/Resources/brochure s/power/vertical/JT\_VerticalTur binePumps\_E00633.pdf



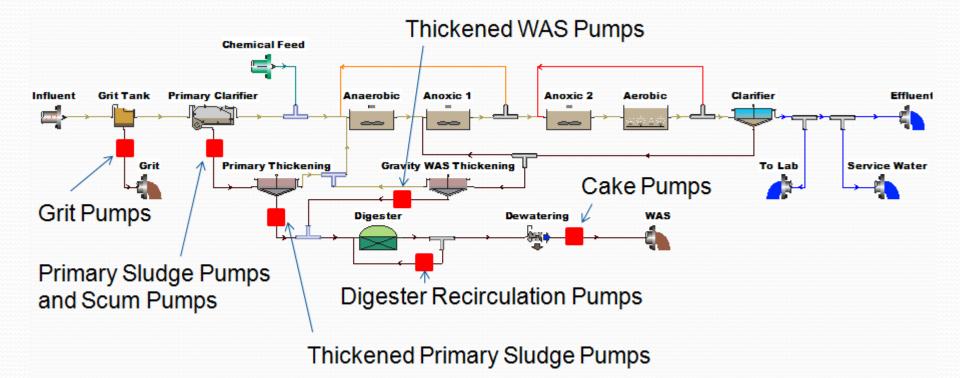
- Traditional Vertical Turbine Installations
  - Advantages
    - Very High Heads Achievable
    - High Efficiency
    - Compact Layout
  - Disadvantages
    - Close Tolerances Limit Solids Passage



### **Vertical Turbine Performance**



http://www.sulzerpumps.com/Portaldata/9/Res ources/brochures/power/vertical/JT\_VerticalTu rbinePumps\_E00633.pdf




### Session 3 – Solids Stream Process Pumps

- Grit/Screening Pumps
- Primary Sludge/Scum Pumps
- Thickened Primary Solids Pumps
- Thickened Waste Biosolids Pumps
- Digested Sludge Recirculation Pumps
- Dewatered Cake Pumps



### Solids Stream Process Pumps

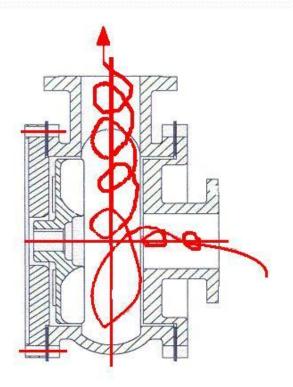




# **Grit Pumps**

Characteristics of Unwashed Grit

- Particles Larger than 65-mesh (0.21-mm) for Coarse Grit
- Particles Between 100-mesh (0.15-mm) to 65-mesh for Finer Grit
- Solids: Concentration depends on pumping frequency (usually less than 300-mg/l)
- Very Abrasive: (Moh's Hardness of 6 to 7 if Granite/Quartz sand present)
- Greater than 50% Organic Content (vector attraction)
- Behaves and Pumps Like "Water" (i.e. not particularly viscous)
- Required where bucket scrapers or hand shoveling isn't sufficient
  - Typically Pumps to a Combination Grit Concentrator/ Grit Washer




### **Grit Pumps**

- Pumps Suitable for Grit Pump Applications
  - Centrifugal Non-Clog End Suction (dry-pit)
  - Screw Centrifugals
  - Torque Flow Pumps
    - Recessed Impeller End Suction
  - Suction Lift Self-Priming Centrifugal Pumps
  - Air-Lift Pumps



### **Principal of Torque Flow**



- Vortex Created in Front of Impeller
- Fluid Drag of Water in Contact with the Impeller Pulls Along Rest of Fluid

#### Source:

http://www.hunterequipmentco.com/newslett ermar07/images/esscoflow.jpg



### **Torque Flow Pumps**



Source: http://www.voigtab.com/images/WemcoCPu mp.jpg

- Recessed Impeller Installation
  - Advantages
    - No Close Tolerances
    - Allow Use of Hard to Machine (i.e. Tough) Materials for Impeller
    - Less Flow in Contact with Impellor Reduces Abrasion
  - Disadvantages
    - More Costly
    - Less Efficient



### **Turbo Self-Priming Grit Pump**



#### Source:

http://www.smithandloveless.com/images/Grit-Pump300px.jpg

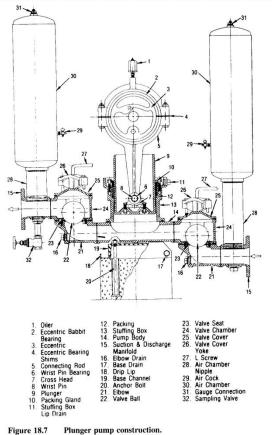


- Advantages
  - Eliminated Grit Pump Dry-Pit
  - Positive Priming System
  - High Heads for Grit Concentrator Operation
  - Completely Drains to Prevent Freezing
- Disadvantages
  - Complex Priming System
  - Relatively Inefficient
  - Only Works with Certain Types of Grit Chambers



## Primary Sludge Pumps

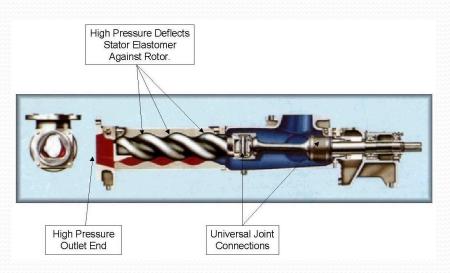
• Characteristics of Primary Sludge


- Contains Fine Grit that Did Not Get Removed in Grit Chamber
- Solids: Concentrations Between 2% to 7%
- Oil & Grease Accounts for 5% to 8% of Solids
- pH: 5 to 8
- Specific Gravity of Solids: 1.4
- Bulk Specific Gravity: 1.02 to 1.07
- More Viscous than Raw Wastewater
  - Difference Most Notable at Low Velocities
  - Maintain Velocities > 2-fps to 2.5-fps to Ensure Turbulent Flow



## Primary Sludge Pumps

- Typical Suitable Pumps
  - Torque Flow/Recessed Impeller Pumps
  - Screw Centrifugal Pumps
  - Positive Displacement Pumps
    - Plunger Pumps
    - Progressive Cavity Pumps
    - Air Operated Diaphragm Pumps
    - Rotary Lobe Pumps
    - Pneumatic Ejectors
    - Peristaltic Hose Pumps






- Plunger Pump Installation
  - Advantages
    - Solids up to 15%
    - Adjustable Stoke Allows Low Pumping Rates
    - Can Operate Under "No-Flow" Conditions
    - Rugged with Relatively Low O&M Requirements
    - Good Pump Suction Characteristics
  - Disadvantages
    - Pulsating Flow Unless
       Dampeners Provided
    - Limited to <500-gpm</li>



Source: WEF MOP 8 Vol. 3 page 18-17 Civil Water Solutions, LLC



Source: http://www.lifetimereliability.com/images/013\_helical\_rotor\_p ump.jpg  Progressive Cavity Pump Installation

- Advantages
  - Solids up to "Cake" Consistency with Hopper Intake
  - Smooth Flow Output
  - Prevents Backflow so No Check Valve is Required
  - Adjustable Speed Drive Allows
     Low Pumping Rates
- Disadvantages
  - Can Not Operate in "No-Flow" Condition
  - Require Sufficient Space for Dismantling
  - Sensitive to Grit
  - Requires Careful Consideration
     of Suction Conditions





Source:

http://www.flsmidthminerals.com/NR/rdonl yres/C088F975-A2D3-4A90-8181-348505DA1EF2/32356/ODS\_Pump.jpg



- Air Operated Diaphragm Pump Installation
  - Advantages
    - Handles both Unthickened and Thickened Sludge
    - Adjustable Stroke Allows
       Low Pumping Rates
    - Resistant to Wear Not Sensitive to Grit
  - Disadvantages
    - Requires Compressed Air
    - Noisy Exhaust
    - Pulsating Discharge



Source: http://www.processcontrols.com/Burlington\_Pump/images/viki ng/LobePumpLarge.gif

- Rotary Lobe Pump Installation
  - Advantages
    - Smooth Flow Discharge
    - Can Operate Under "No-Flow" Conditions
    - Compact Layout
  - Disadvantages
    - Sensitive to Grit
    - Requires Careful Consideration of Suction Conditions





Source: http://www.yeomanspump.com/images/40 00\_02.jpg

- Pneumatic Ejector Installation
  - Advantages
    - Can Transport Sludge, Scum, Grit and Screenings
  - Disadvantages
    - Pulsating Discharge
    - Limited to <150-gpm
    - Requires Compressed Air System



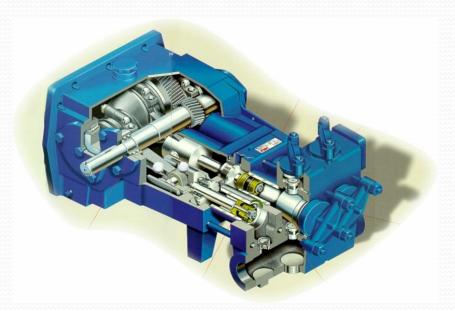


Source: http://www.pennwalt.com/hp1.jpg

- Peristaltic Hose Pump Installation
  - Advantages
    - Easily Adjustable Flow Rate
    - Suitable for Metering Applications
    - Can Transport Very Abrasive Fluids , Scum, Grit and Screenings
  - Disadvantages
    - Pulsating Discharge
    - Limited to <330-gpm



## **Primary Scum Pumps**


- Characteristics of Primary Scum
  - Solids: Low Total Solids Concentration (<20-mg/l)
  - Oil & Grease: 70% to 90% of Solids
- More Viscous than Raw Wastewater Due to Grease Accumulation
- Pumps Suitable for Primary Scum
  - Progressive Cavity Pumps
  - Pneumatic Ejectors
  - Recessed Impeller Centrifugal Pumps



## **Thickened Primary Sludge Pumps**

- Characteristics of Thickened Primary Sludge
  - Contains Concentrated Fine Grit that Did Not Get Removed in Grit Chamber
  - Solids: Concentrations Between 6% to 10%
  - Oil & Grease Accounts for 5% to 8% of Solids
  - pH: 5 to 8
  - Bulk Specific Gravity: 1.04 to 1.07
- Much More Viscous than Raw Wastewater Due to Grease Accumulation
- Pumps Suitable for Thickened Primary Sludge
  - Plunger Pumps
  - Progressive Cavity Pumps (Provided There is Good Grit Removal)
  - Air Operated Diaphragm Pumps
  - Pneumatic Ejectors
  - Reciprocating Piston Pumps Where Thickened Sludge Must Be Pumped Long Distances





#### Source:

http://www.crosspump.net/fmc/images/fmcpum p.jpg

- Reciprocating Piston Pump Installation
  - Advantages
    - Solids up to "Dry Cake" (>30%)
    - Adjustable Stoke Allows Low Pumping Rates
    - Very High Heads at Low Flows
  - Disadvantages
    - Pulsating Flow Unless
       Dampeners Provided
    - Subject to Mechanical Wear Under High Loads
    - Expensive Replacement Parts



### **Thickened WAS Biosolids Pumps**

- Characteristics of Thickened Waste Activated Sludge
  - Solids: Concentrations Between 2% to 3%
  - Bulk Specific Gravity: 1.01 to 1.02
- Slightly More Viscous than Raw Wastewater
- Similar to Pumping Raw Primary Sludge
- Pumps Suitable for Thickened WAS Biosolids
  - Torque Flow/Recessed Impeller Pumps
  - Screw Centrifugal Pumps
  - Positive Displacement Pumps
    - Plunger Pumps
    - Progressive Cavity Pumps
    - Air Operated Diaphragm Pumps
    - Rotary Lobe Pumps
    - Pneumatic Ejectors



## **Digester Recirculation Pumps**

- Characteristics of Digested Sludge
  - Solids: Concentrations Between 1% to 3%
  - pH: 6 to 8
- Similar to Pumping Raw Wastewater or WAS
- Pumps Suitable for Anaerobic Digester Recirculation
  - Centrifugal Non-Clog Dry-Pit
  - Torque Flow/Recessed Impeller Pumps
  - Screw Centrifugal Pumps
- Pumps Suitable for Aerobic Jet Aeration
  - Submersible Recessed Impeller



### Aerobic Sludge Digestion Recirculation



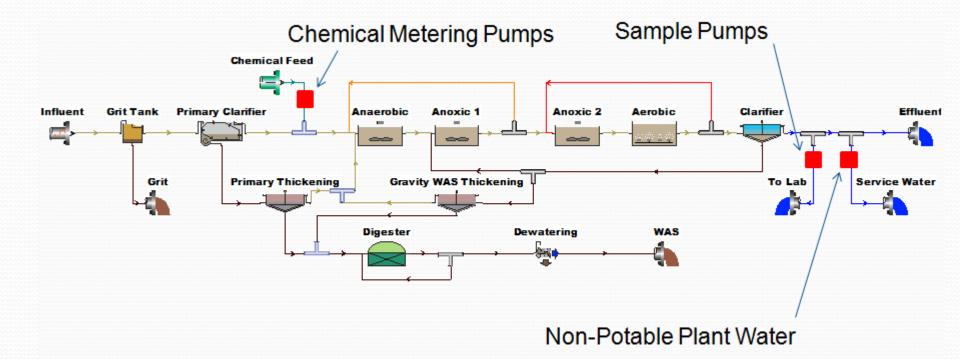
Source: http://www.itttreatment.com/Prod uctPDF/63559-894463eng.pdf

- Recessed Impeller Submersible Pump Application with Jet Aeration
  - Advantages:
    - Simple Installation
    - Aerates and Recirculates Flow in One Unit
  - Disadvantages
    - Submersed Location
    - Subject to Significant Wear if There is Grit



### **Dewatered Solids Cake Pumps**

- Characteristics of Dewatered Sludge Cake
  - Solids: Concentrations Up to 25% (However Better if <20%)
  - Thixotropic Properties (Like Gooey Clay)
  - Head Losses approaching 3-psi/ft
  - Limit Velocity to Under 0.5-ft/sec (However Better if <0.25-ft/sec)
  - May Require Lubricating Ring
- Pumps Suitable for Dewatered Cake Pumping
  - Reciprocating Piston Pumps
  - Progressive Cavity Pumps (with Hopper Intake)
- For Solids Concentrations > 25% Use Conveyors




#### Session 4 – Service Pumps

- Non-Potable Water Service Pumps
- Sample Pumps
- Chemical Metering Pumps



### **Service Pumps**





### Non-Potable Water Service

### Pumps

Characteristics of Clarified Effluents

- Moderate to High Heads
- Temperature: 34-°F to 60-°F
- Solids: Less than 30-mg/l (0.03%)
- pH: 6 to 9 (not unusually acidic or basic)
- Behaves and Pumps Like "Clean Water"
- Pumps Suitable for Non-Potable Water Service
  - Vertical Turbine Pumps
  - Centrifugal Non-Clog End Suction (Allow Smaller Solids Capacity than for Raw Wastewater Applications)



## Sample Pumps

- Characteristics of Sample Systems
  - Small Pipelines
  - High Heads and Low Flows
  - Generally Constructed of Inert Materials
- Behaves and Pumps Like "Clean Water"
- Pumps Suitable for Higher Volume Sample Pump Service
  - Vertical Turbine Pumps
- Pumps Suitable for Low Volume Precise Sampling
  - Positive Displacement Peristaltic Hose Pumps



- Characteristics of Sample Systems
  - Small Pipelines
  - Moderate to Low Heads and Low Flows
  - Must Be Constructed of Materials Suitable for Each Chemical for Its Intended Use
- Pumps Suitable for Chemical Metering Pumps
  - Diaphragm Pumps
  - Piston/Stroke Pumps
  - Hose/Tube Pumps





Source: http://www.maddenmfg.com/images/ mettering-pump-mf-02.jpg

- Diaphragm Metering Pump Installation
  - Advantages
    - Continuous Duty
    - Precise Volumetric Measurement
    - Greater than 10:1 Turn-Down Ratio
  - Disadvantages
    - Requires VFD Drive





Source:

http://www.lmipumps.com/lmages/lmi/Glo bal/US-en/site\_images/sp1\_series.gif

- Piston/Stroke Pump Installation
  - Advantages
    - Continuous Duty
    - Precise Volumetric Measurement
    - Easily Adjustable Stroke
    - Good Turn-Down Ratio (Up to 100:1)
  - Disadvantages
    - Moderately Higher Cost
    - Limited Capacity





Source:

http://www.metconeng.com/mydocs/medi a/jpeg/wmb\_720\_series\_pumps071708\_ 142705.jpg

- Peristaltic Tube Pumps
  - Advantages
    - Continuous Duty
    - Precise Volumetric Measurement
    - Greatest Turn-Down Ratio (Up to 360:1)
  - Disadvantages
    - Limited Capacity
    - Tube Must be Periodically Replaced



# Olde Engilish Proverb

"Nobody appreciates water until the well runs dry"

Thank you for your dedication to the water & wastewater industry



#### PDF of This Presentation Available at:

#### www.civilwatersolutions.com



#### **Questions?**

Contact: Ray Hamilton, PE, BCEE Civil Water Solutions 9249 S. Broadway Blvd Unit 200 Drop 346 Highlands Ranch, CO 80129 ray@civilwatersolutions.com 303-815-9537

